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The spin-split states subject to Rashba spin-orbit coupling in two-dimensional systems have long been
accepted as pointing inplane and perpendicular to the corresponding wave vectors. This is in general true for
free-electron model, but exceptions do exist elsewhere. Within the tight-binding model, we unveil the unusual

upstanding behavior of those Rashba spins around K̄ and K̄� points in honeycomb lattices. Our calculation �i�
explains the recent experiment of the Tl /Si�111�-�1�1� surface alloy �K. Sakamoto et al., Phys. Rev. Lett.

102, 096805 �2009��, where abrupt upstanding spin states near K̄ are observed and �ii� predicts an electrically
reversible out-of-plane surface spin polarization.

DOI: 10.1103/PhysRevB.80.241304 PACS number�s�: 73.20.At, 73.63.�b, 71.70.Ej

The honeycomb lattice is one of the three types of two-
dimensional regular tessellation—triangular, square, and
hexagonal tilings. In solid-state physics, the honeycomb lat-
tice is described by two staggered triangular sublattices. The
identity of the comprising atoms of the two sublattices deter-
mines if the honeycomb is monoatomic or diatomic, and
their interlayer distance determines whether the honeycomb
is flat or bilayer. Thus graphene and boron nitride are mono-
atomic and diatomic flat honeycombs, respectively,1 Bi�111�
bilayer surface2 is a monoatomic bilayer honeycomb, and
Tl /Si�111�-�1�1� surface alloy3 is a diatomic bilayer hon-
eycomb.

Among these honeycomb lattices, graphene has been un-
der the most intensive investigation due to its unusual Dirac-
like electronic excitations.4 When deposited on a substrate,
the structural inversion symmetry perpendicular to the
graphene plane is broken, and the Rashba spin-orbit
coupling5 hence emerges. Recent experimental measurement
of Rashba spin splitting in graphene on Ni�111� substrate
with6 and without7 an intercalated Au monolayer eventually
drew theorists’ attention to the electronic structure, in the

presence of Rashba coupling, of graphene,8 i.e., near K̄ and

K̄� in monoatomic flat honeycomb. In other honeycomb sys-
tems, Bi�111� bilayer surface is believed to contain strong
Rashba coupling9 and exhibit interesting spin-Hall patterns,10

and a more recent experimental effort even shows an unusual

Rashba spin behavior at K̄ point in Tl /Si�111�-�1�1� sur-
face alloy.3

In this Rapid Communication we present a unified tight-
binding description to understand the Rashba effect in hon-
eycomb lattices. To focus on the major effect brought by the
Rashba coupling, we consider electron hopping up to the
nearest neighbors. Particular attention will be paid to the spin

configuration near K̄ and K̄� points, which shows an abrupt
upstanding Rashba spin behavior, in good agreement with

Ref. 3. Moreover, we show that the upstanding spins along K̄

and K̄� directions are opposite. Accordingly, we propose an
electrically reversible out-of-plane surface polarization,
which will be numerically shown by Landauer-Keldysh for-
malism.

Consider a honeycomb lattice constructed by

primitive translation vectors t1=a�1 /2,�3 /2,0� and
t2=a�−1 /2,�3 /2,0�, and basis vectors d1=0 and
d2=a�0,1 /�3,dz�, where a is the lattice constant. For flat
honeycombs we have dz=0, and dz�0 describes a bilayer
case. We begin with the 4�4 tight-binding Hamiltonian10 of
the Slater and Koster type,1,11

H = �H11 H12

H12
† H22

� , �1�

with off-diagonal element

H12 = � U�1 + 2F� − itR�1 − F − �3G�

− itR�1 − F + �3G� U�1 + 2F�
� , �2�

where tR is the Rashba hopping strength, U
� lz

2Vpp�+ �1− lz
2�Vpp�, lz being the direction cosine of

nearest neighbors �lz=0 for flat and lz�0 for bilayer�,
is the two-center interaction integral involving pz
atomic orbitals, and the compact functions are
given by F�exp�−i�3kya /2�cos�kxa /2� and G
�exp�−i�3kya /2�sin�kxa /2�. The diagonal elements of Eq.
�1� are Hii=EpiI with I the 2�2 identity matrix and i=1,2.
For monoatomic honeycombs, we have Ep1=Ep2=Ep but for
diatomic honeycombs, Ep1�Ep2. In the following we con-
sider Ep1=Ep2; straightforward generalization to the diatomic
case will be shown later.

Adopting the same trick of Rashba,8 Eq. �1� can be re-
duced to a 2�2 Hamiltonian,

HA�E� = EpI +
H12H12

†

E − Ep
�3�

for sublattice A, which depends explicitly on its eigenvalue
E. The Schrödinger equation of Hamiltonian �3� is
HA�E�	�A
=E	�A
. By solving the characteristic equation
det�HA�E�−E�=0 the eigenvalues of Eq. �3� can be written
as

E�� = Ep + �E�, �,� = � 1 �4�

with
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E� =�Tr h + ���Tr h�2 − 4 det h

2
, �5�

where

h = H12H12
† = �h11 h12

h21 h22
� �6�

will play an important role in the following derivation. The
eigenvectors can be written as either of

	�A
��
 = �	h12	2 + 	E�

2 − h11	2�−1/2� h12

E�
2 − h11

� �7a�

	�A
��
 = �	E�

2 − h22	2 + 	h21	2�−1/2�E�
2 − h22

h21
� , �7b�

which are independent of �. Both Eqs. �7a� and �7b� are
valid for carrying out the spin expectation �S�
= �	 /2���� 
, ��
= ��x ,�y ,�z� being the Pauli-matrix vector, except at the

symmetry points 
̄, M̄, K̄ and K̄�. With careful treatment at
those points, the spin direction �S�
��= �	 /2���A

��	�� 	�A
��


based on Eq. �7� subject to the four eigenstate branches are
shown in Figs. 1�a�–1�c�; the band structure according to
Eqs. �2�–�6� is shown in Fig. 1�d�. Clearly one can see an

abrupt upstanding component �Sz
�� near K̄ and K̄� points.
For the �=+1 branch, we depict the spin configuration based
on Eq. �7� in Fig. 2, where each arrow is determined by

���x
�+ , ��y
�+� and the color shading is by ��z
�+. The

bright �dark� region of ��z
�1 ���z
�−1� around K̄�K̄�� can
be clearly seen in the main panel of Fig. 2, reflecting its
inherent C3 symmetry.

To provide deeper understanding of Fig. 1, as well as the
zoomed-in plots of Fig. 2, below we give a series of discus-
sion of E�� and ��� 
�� around those symmetry points.

The 
̄ point. Assuming k=�� =��cos � , sin �� with �a
1, one can obtain

E��
̄ + ��� � 3	U	 +
�tR

2 − 2U2�
8	U	

�2a2 + �
�3

2
tR�a �8�

and ��� 
���
̄+����−��sin � ,−cos � ,0� which is identical to
the free-electron case. Equation �8� is useful for determining
parameters Ep, U, and tR by matching with the free-electron
dispersion E�k�=E0+	2k2 /2m���k. The band offset E0, the
Rashba parameter �, and the curvature 	2 /2m� �or the effec-
tive mass m��, as well as the lattice constant a are experi-
mentally measurable. In the usual tR

2  	U	2 case we have
Ep=E0+ 	3U	, 	U	=2	2 /m�a2, and tR=2� /�3a.

The M̄ point. Let M̄ = �2� /a ,0�, i.e., M̄2 in Fig. 1. Assum-

ing k=M̄ +�� = �2� /a+�x ,�y� one obtains an anisotropically
free-electron-like dispersion,

E��M̄ + ��� � �U2 + 4tR
2 −

	U	
4

��x
2 − 3�y

2�a2

+ �
�3

2
tR

��x
2 + 9�y

2a , �9�

which indicates that M̄ is a saddle point as one can see from
the different sign of �x

2 and �y
2 in the second term. This means

that the effective mass of the electron at state near M̄ has
opposite sign when going along and perpendicular to the
Brillouin-zone boundary. In addition, the latter has an effec-
tive mass 3 times lighter and an effective Rashba parameter
three times stronger than the former. Equation �9� therefore

explains why we have band shape near 
̄ identical with that

near M̄2 but not M̄1 �see Fig. 1�d��.
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FIG. 1. �Color online� The spin components �a� �Sx
��, �b�
�Sy
��, and �c� �Sz
�� of energy eigenstates of a Rashba spin-orbit-
coupled monoatomic honeycomb lattice with its band structure
shown in �d�. The parameters are set tR / 	U	=0.12. The Brillouin
zone is shown in the inset in �d�.
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FIG. 2. �Color online� Spin configuration for the �=+1 branche.
Each arrow is given by ���x
�+ , ��y
�+� and the color shading is
determined by ��z
�+.
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The anisotropy at M̄ also reveals in the corresponding
spin direction,

��� 
���M̄ + ��� �
�

�5 − 4 cos 2�
3 sin �

cos �

2tR

	U	
cos �� , �10�

where we keep terms up to first order in tR / 	U	. Clearly from
Eq. �10� the z component saturates to 2tR / 	U	 along the Bril-

louin boundary near M̄ but vanishes when going perpendicu-
lar to the boundary �see Fig. 1�c��.

The K̄ and K̄� points. Let K̄�= �g1−g2� /3. Assuming

k= K̄�+�� = �4� /3a+�x ,0+�y� we obtain

E��K̄� + ��� �
1

2
��3tR�2 + 3U2�2a2 + �

3tR

2
, �11�

in agreement with Ref. 8. The spin direction near K̄�, up to
second order in ��a�, is given by

��� 
���K̄� + ��� = �
−

U
�3tR

�a sin �

U
�3tR

�a cos �

− 1 +
1

6

U2

tR
2 �2a2� , �12�

which shows at K̄� we have ��z
���K̄��= �1. Around K̄ the
dispersion is identical to Eq. �11�, and the spin configuration
has a reversed helicity, i.e., opposite out-of-plane component,

��z
���K̄ + ��� = − ��z
���K̄� + ��� , �13�

but unchanged inplane component.
So far the discussion is basically for sublattice A since we

have obtained reduced Hamiltonian �3� by expressing the
wave function of sublattice B, �B, in terms of that of sublat-
tice A, �A. We could have as well expressed �A in terms of
�B; the resulting reduced Hamiltonian then would be
HB�E�=EpI+H12

† H12 / �E−Ep�, leading to identical disper-
sion, identical inplane spin direction, but opposite ��z
 com-
ponent,

��A	�z	�A
 = − ��B	�z	�B
 . �14�

In addition, we have so far focused on the monoatomic hon-
eycomb lattice. For different sublattice atoms A and B, we
have Ep1�Ep2. The energy dispersion can be straightfor-

wardly derived as ����k�= Ēp+��� with ��=��p
2 +E�

2,

Ēp= �Ep1+Ep2� /2, �p= �Ep1−Ep2� /2, and E� given by
Eq. �5�. Noticing from Eqs. �8�, �9�, and �11� that around the

symmetry points E+�E− occurs only at K̄ and K̄�, we expect
the modification to the band structure due to �p appears the

most salient at K̄ and K̄�. Indeed, with E��k= K̄ or K̄��
=3tR�1+�� /2 a gap �+−−�−−=2�−=2	�p	 is opened. At other
symmetry points, ��� remain degenerate. Despite the opened
gap, however, the eigenvectors surprisingly remain the same

as Eq. �7�, and the upstanding Rashba spin around K̄ and K̄�
described previously is therefore unchanged.

To show the opened gap with unchanged spin direction,
we plot the energy dispersion curves with ��z
�� in Fig. 3 for

monoatomic honeycomb near K̄� �panel �a�� and diatomic

honeycomb near K̄ �panel �b��. Figure 3�b� readily explains
the recent spin-resolved angle-resolved photoelectron spec-
troscopy data for the Tl /Si�111�-�1�1� surface alloy.3 In
such surface alloy,12,13 the Tl coverage on the Si�111� sub-
strate is one monolayer, and the topmost Tl �sublattice A� and
Si �sublattice B� layers form a diatomic honeycomb lattice of
the bilayer type �dz�0�. The �=+1 branch in Fig. 3�b� thus

resembles the band feature near K̄ reported in Ref. 3. It is
important to note, however, that for flat honeycombs such as
graphene, both sublattices A and B will be simultaneously
measured, leading to vanishing �Sz
, in view of Eq. �14�.

We have shown that the upstanding Rashba spin around K̄

and K̄� points is a fundamental property of the spin configu-
ration in honeycomb lattices, whether flat or bilayer, mono-
atomic or diatomic. Next we illustrate how striking this prop-
erty can be. For simplicity, let us consider a six-terminal
channel made of monoatomic bilayer honeycomb. See the
inset in Fig. 3. Assume that the transport of this six-terminal
device is supported by the surface states so that electrons are
only allowed to hop within the surface bilayer, i.e., the hon-
eycomb lattice. Let the Fermi energy EF lie just at Ep. The
situation is like Fig. 3�a�. Recalling Eq. �14� we expect that

when driving the electrons along K̄�, the transport states with
EF=Ep are +z spin polarized on sublattice A but −z spin
polarized on sublattice B. Recalling further Eq. �13�, the sur-
face spin polarization �assumed to be contributed by sublat-
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Ēp + |∆p|
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FIG. 3. �Color online� Energy dispersion and ��z
�� �indicated
by arrows� for �a� monoatomic and �b� diatomic honeycomb lat-
tices. In �a� the black dashed lines are the approximated dispersions
given by Eq. �11�; EM =�U2+4tR

2 . In �b� we set �p=0.1	U	; �M

=��p
2 +U2+4tR

2 and �K=��p
2 + �3tR�2. The inset shows a sox-

terminal bilayer honeycomb channel with black �gray� dots the up-
per �lower� sublattice.

UPSTANDING RASHBA SPIN IN HONEYCOMB LATTICES:… PHYSICAL REVIEW B 80, 241304�R� �2009�

RAPID COMMUNICATIONS

241304-3



tice A only� is out-of-plane and can be electrically controlled
by either K̄ or K̄� biasing.

To visualize this idea, let us calculate for the six-terminal
bilayer honeycomb channel the local spin densities by em-
ploying the Landauer-Keldysh14,15 formalism, subject to
Hamiltonian, H=Ep�ncn

†cn+��nm
cm
† �UI+ itR��� �dmn�z�cn,

with cn
†�cn� the creation �annihilation� operator of the elec-

tron on site n and dmn the unit vector pointing from site n to
m. The total number of lattice sites in the honeycomb chan-
nel is 480. For clarity we will plot ��z
 only on the surface
�sublattice A�. A positive �negative� ��z
 on each site will be
denoted by a red �green� dot, with the dot size proportional
to the magnitude of ��z
. The applied potential energy of
�eV0 /2 will be denoted as “�,” and eV0=0 as “0” on each
lead. The parameters Ep=0, U=−1 eV, and tR / 	U	=0.12 are
identical to those used in previous figures, and are within a
realistic range.16 The bias is eV0=2 meV.

First we drive the electrons from left to right, correspond-

ing to K̄�. As expected, we have a positive average of surface
spin polarization ��z
�0, as shown in Fig. 4�a�. When rotat-
ing the bias direction by 60° counterclockwise, the surface
polarization becomes ��z
�0 as a consequence of Eq. �13�
�see Fig. 4�b��. Reversing the bias of Fig. 4�a� also switches

K̄� states to K̄, leading to ��z
�0, as shown in Fig. 4�c�. In
Fig. 4�d� we drive the electrons from bottom to top, corre-

sponding to the M̄ direction. The spin-density distribution
becomes completely different and satisfies the intrinsic spin-
Hall symmetry, which yields ��z
=0. Figures 4�a� and 4�c�
imply that the out-of-plane surface spin polarization can be
flipped simply by reversing the bias, which is also a direct
consequence of time-reversal operation. To show this
electrical control of surface spin, we plot ��z
 and ���

����x
2+ ��y
2�1/2 as a function of the bias eV0 in Figs. 4�e�
and 4�f� for K̄� / K̄ and M̄ biasing, respectively. Within the
low bias regime �see the inset between Figs. 4�e� and 4�f��,
��z
 for K̄� / K̄ biasing grows with eV0 linearly, while other
components are either vanishing or relatively small.

In conclusion, we have presented a unified tight-binding

description to understand the Rashba effect in graphene, as
well as bilayer surfaces and surface alloys of the honeycomb
structure. Our results explain the recently observed abrupt
upstanding Rashba spin in Tl /Si�111�-�1�1� surface alloy

around K̄ and predict an electrically reversible out-of-plane
surface spin polarization, which may serve as a storage
mechanism for future spintronic devices.
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FIG. 4. �Color online� Surface spin polarization in a 6-terminal

bilayer honeycomb channel with �a� K̄� biasing, �b� and �c� K̄ bias-

ing, and �d� M̄ biasing. Red/gray �green/light gray� dots represent a
��z
�0���z
�0� local spin density with the dot size proportional
to 	��z
	. ��z
 and ���
 as functions of the bias eV0 are shown in �e�
for K̄ / K̄� biasing and in �f� for M̄ biasing.
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